Transductive Adversarial Networks (TAN)

نویسنده

  • Sean Rowan
چکیده

Transductive Adversarial Networks (TAN) is a novel domain-adaptation machine learning framework that is designed for learning a conditional probability distribution on unlabelled input data in a target domain, while also only having access to: (1) easily obtained labelled data from a related source domain, which may have a different conditional probability distribution than the target domain, and (2) a marginalised prior distribution on the labels for the target domain. TAN leverages a fully adversarial training procedure and a unique generator/encoder architecture which approximates the transductive combination of the available sourceand target-domain data. A benefit of TAN is that it allows the distance between the sourceand target-domain label-vector marginal probability distributions to be greater than 0 (i.e. different tasks across the source and target domains) whereas other domain-adaptation algorithms require this distance to equal 0 (i.e. a single task across the source and target domains). TAN can, however, still handle the latter case and is a more generalised approach to this case. Another benefit of TAN is that due to being a fully adversarial algorithm, it has the potential to accurately approximate highly complex distributions. Theoretical analysis demonstrates the viability of the TAN framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Efficient Algorithms for Adversarial Contextual Learning

We provide the first oracle efficient sublinear regret algorithms for adversarial versions of the contextual bandit problem. In this problem, the learner repeatedly makes an action on the basis of a context and receives reward for the chosen action, with the goal of achieving reward competitive with a large class of policies. We analyze two settings: i) in the transductive setting the learner k...

متن کامل

Minimizing Trust Leaks for Robust Sybil Detection

Sybil detection is a crucial task to protect online social networks (OSNs) against intruders who try to manipulate automatic services provided by OSNs to their customers. In this paper, we first discuss the robustness of graph-based Sybil detectors SybilRank and Integro and refine theoretically their security guarantees towards more realistic assumptions. After that, we formally introduce adver...

متن کامل

Conditional Generative Adversarial Networks for Speech Enhancement and Noise-Robust Speaker Verification

Improving speech system performance in noisy environments remains a challenging task, and speech enhancement (SE) is one of the effective techniques to solve the problem. Motivated by the promising results of generative adversarial networks (GANs) in a variety of image processing tasks, we explore the potential of conditional GANs (cGANs) for SE, and in particular, we make use of the image proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.02798  شماره 

صفحات  -

تاریخ انتشار 2018